Posted – July 1st, 2010
under CannaLogic
Leave a comment
– go to post

Producing Seeds

Marijuana is naturally prolific. It has been estimated that a single male plant can produce over 500 million pollen grains 41. A large female plant can bear tens of thousands of seeds. In nature, pollen is carried from the male flowers to the stigmas of the female flowers by air currents or the wind. Indoors or out, if the plants are simply left on their own, most gardens produce many more seeds than are needed for the next crop.

Seeds usually become viable within two weeks after pollination, although they may not have developed good colour by this time. The colour can take several more weeks to develop, particularly indoors or late in the year, when the light is not as strong. Once seeds are plump, well-formed, and of a mature size, most of them will be viable. When seeds have also developed good colour, their viability should be over 90 percent.

Pollination may also be carried out artificially. Pollen can be collected and the transferred to the female flowers with a cotton swab or artist's brush, or shaken directly over the flowers. Store pollen in a clean, open container and keep in a dry area at moderate temperature. Remove any flowers or vegetative matter from the pollen, because they encourage fungal attack.

Once advantage of artificial pollination is that only the flowers on certain plants need be pollinated. This allows you to harvest most of your grass as sinsemilla, while developing seed on part of the plant. If you have only a few plants, pollinate a single branch, or perhaps only a few lower buds, in order to leaves the most potent buds seedless.

A good way to insure a thorough pollination, and to avoid contaminating other females, is to loosely tie a transparent bag containing pollen directly over individual buds, branches, or whole plants. Shake the bag to distribute the pollen and carefully remove it from several hours to a few days later.

To avoid contaminating a sinsemilla crop, you must remove any males from the garden before their flowers open. Males in pots can simply be moved to another area or room if you want to keep them growing. Male plants can complete development even in low light; so they do not need artificial light. Otherwise, the best procedure is to harvest the males intact by cutting them at their base after some flowers have formed distinct (but unopened) buds. Hang the whole plants upside down in a sheltered area where there is moderate light and where temperatures and humidity are not extreme. Place clean plates or sheet plastic beneath the plants to catch falling pollen. Generally there is enough stored water in the plant for the unopened flowers to mature and drop pollen. Well-formed flowers may open the next day. Usually all the flowers that are going to open will do so within two weeks.

Pollen gradually loses viability with time, but pollen that is about three weeks old generally has sufficient viability for good seed production. However, the age of the pollen may influence the sex ratio of the next generation.

For instance, in a 1961 study with hemp plants 97, the percentage of females in the next generation was 20 percent higher than in the control plants (natural pollination) when pollen 14 to 17 days old was used. A small increase in female-to-male ratios also occurred when pollen was fresh (six hours or less). The age of the stigmas appeared not to affect the sex ratio.

Producing Female Seeds

If it were possible to know which seeds are female and which are male, marijuana growing would be even simpler than it is. There is not practical way to discern the gender of a seed – but there is a simpler procedure for producing seeds that will all grow into female plants.

To produce feminized seeds, the plants are fertilised with pollen with male flowers that appear on a basically female plant. Such flowers appear on intersexes, reversed females, and hermaphrodites (see section 17). Female plants have an XX complement of sex chromosomes; therefore, the pollen from the male flowers that form on female plants can only carry an X chromosome. All seeds produced from flowers fertilised with this "female" pollen will thus have an XX pair of sex chromosomes, which is the female genotype.

Although the male Cannabis plant can produce female flowers, it cannot produce seed; so there is no chance of mistakenly producing seed on a male plant. It is possible to use pollen from an intersexual plant that is basically male (XY); the resulting crop of seeds will have the normal 1:1 ratio of males to females. For this reason, choose a plant that is distinctly female as a pollen source. A female plant with a few random male-flower clusters, or a female plant that has reversed sex are both good pollen sources. The seed bearer can be any female, female intersex, or reversed-female plant.

In most crops, careful inspection of all the females usually reveals a few male flowers. And often, when females are left flowering for an extended period of time, some male flowers will develop. If no male flowers form, you can help to induce male flowers on female plants by severe pruning. One such procedure is to take the bulk of the harvest, but to leave behind some green leaves to maintain growth (as described in the section on "Double Harvests" in section 20). Most of the plants will continue to form female flowers, but male flowers are also likely to form. At times, the plants may not grow particularly well, and may in fact form distorted and twisted leaves, but they will produce viable seeds as long as some stigmas were white when pollinated. (Remember, it only takes a few fertile buds to produce hundreds of seeds.) Pollinate the female flowers by hand as soon as pollen becomes available.

{Figure 82. A solitary male flower on a female plant provides "female" pollen. (Also see Figure 84 for a female reversing sex.)} {Figure 83. Growth may not be vigorous, but seeds will form if stigmas are white when pollinated.} Under artificial lights, turn the light cycle down to eight hours after cutting the plants back. The short cycle helps to induce male flowers on female plants.

Male-free seed can also be produced by pollen from a natural hermaphrodites. The progeny, however, may inherit the hermaphroditic trait, resulting in a crop with some hermaphrodites as well as females. This could be a problem if you want to grow sinsemilla the next crop.


Breeding Cannabis is done simply by selecting certain plants to be the pollinators and the seeds bearers. Characteristics such as fast growth, early maturation, and high potency might be the reasons for choosing one plant over another. Selection can be by means of the male plants, the females, or both. A simple procedure would be to harvest all male plants, sample each for potency, and use the most potent plant for the pollen source. At harvest, compare the seeded females for potency, and use seeds from the most potent plant for the pollen source. At harvest, compare the seeded females for potency, and use seeds from the most potent plant for the following generation.

There are two basic approaches to breeding. One is inbreeding, and the other is outbreeding. Inbreeding involves starting with a single variety and crossing individuals to produce seeds. In this way, certain desirable characteristics that the parents have in common will probably be perpetuated by the offspring.

Certain variants with unusual characteristics, such as three leaves to a node instead of the usual two leaves, can be inbred continuously until all progeny carry the trait. One problem with inbreeding is that other desirable characteristics may be lost as the new population becomes more homogeneous. Inbreeding plants indoors seems to lead in a loss in potency by the fourth generation. (Preceding generations were considered comparable to the original imported grass.)

Outbreeding is crossing two different varieties. Offspring from parents of two different varieties are called hybrids. Cannabis hybrids exhibit a common phenomenon on plants called "hybrid vigour." For reasons not wholly understood, hybrids are often healthier, larger, and more vigorous than either of their parents. {Figure 84. Upper left: An old female reversing to male flowering. Lower left: Three leaves to a node (trifoliate). Upper right: A plant with three leaves to a node alternating with one leaf on next node. Lower right: Three-leafed plants sometimes split into two growing shoots.}

A reference to cannabinoid content of hybrids from crosses between chemotypes was made in a 1972 study by the Canadian Department of Agriculture: "The ratio of THC to CBD in hybrids was approximately intermediate between the parents … there was also occasionally a small but significant deviation toward one of the parents – not necessarily the one with the higher or lower ratio of THC to CBD." 51 This means that a cross between a midwestern weedy hemp (type III) and a fine Mexican marijuana (type I) would yield offspring with intermediate amounts of THC and CBD, and which hence would be considered type II plants.

Homegrowers have mentioned that inbreeding plants often led to a decrease in potency after several generation. Outbreeding maintained potency, and sometimes (some growers claimed) led to increases in potency.

One area in which breeding can be useful for homegrowers is the breeding of early-maturing plants for northern farmer. Farmers in the north should always plant several varieties of marijuana. Mexican varieties generally are the fastest to mature. Individual plants that mature early and are also satisfactorily potent are used for the seed source in next year's crop. This crop should also mature early. Some growers cross plants from homegrown seed with plants from imported seed each year. This assures a maintenance of high-potency stock.

Potency Changes Over Generations

It is well-established that plants of the P1 generation (parentals, or the first homegrown plants from imported seed) maintain their chemical characteristics. (For example, type I plants yield type I progeny whose cannabinoids are about equal both quantitatively and qualitatively to those in their native grown parents.) This fact is shown by Table 25.

In the study 66 from which Table 25 has been adapted, individual plants within varieties differed by more than four times in CBD content and by more than three times in THC content. The researchers also noted that illicit marijuana samples contained proportionately less leaf material and proportionately more stem and seed material than samples grown in Mississippi. (Mississippi samples may be more dilute.) New Hampshire and Panama samples were nearly equal in terms of the sum of THC plus CBN.

One of the questions that persists in marijuana lore is what effect if any a change in latitude has on the plant chemotype over a period of generations. Non-drug types of Cannabis usually originate above 30 degrees latitude in temperate areas. Drug types of Cannabis usually originate in tropical or semitropical areas below the 30-degree parallel. Whether this is due entirely to cultural practices is questionable. More likely, the environment (natural selection) is the prime force, and cultural practices reinforce rather than determine chemotype.

Cannabis is notorious for its adaptability. Historically, there are many statements that the drug type of Cannabis will revert to the "fibre" type when planted in temperate areas, whereas the fibre type will revert to the drug type after several generations in a tropical area. That a change in chemotype is actually caused by transfer between tropical and temperate areas has not been verified scientifically. (Such studies are ongoing in Europe.) If such changes occur, it is also not known whether the change is quantitave (the plant produces less total cannabinoids) or whether it is qualitative (succeeding generations, for example, change from being high in THC and low in CBD to being high in CBD and low in THC).

We believe that qualitative changes can occur within a few generations, but can only guess what environmental factor(s) might be responsible for such a change. Probably the change has more to do with adaption of general growth and developmental characteristics than with particular advantages that production of either CBD or THC may bestow upon the plants.

The reason we suspect a change in chemotype is that these changes occur rapidly in evolutionary terms, in a matter of several generations. This rapidity implies that some very strong selective pressure are acting on the plant populations. Also, changes in the chemotype seem to occur globally, which implies that the selective pressures responsible are globally uniform rather than local phenomena. Such globally uniform pressures might be light intensity, daylength, ambient temperatures, and the length of the growing season. For example, in populations adapting to temperate areas, those plants that are able to grow well under relatively lower light intensity and cooler temperatures, and which are able to complete development in a relatively short growing season, would be favoured over siblings with more tropical characteristics.


Marijuana growing often transcends the usual relationship between plant and growers. You may find yourself particularly attached to one of your plants. Cuttings offer you a way to continue the relationship long beyond the normal lifespan of one plant.

To take a cutting, use scissors or a knife to clip an active shoot about four to sic inches below the tip. Cannabis does not root easily compared to other soft-stemmed plants. Cuttings can be rooted directly in vermiculite, Jiffy-MIX, a light soil, or in a glass of water. The cutting is ready to plant when roots are about an inch long, in about three to four weeks. A transplant compound such as Rootone can be used to encourage root growth and precent fungi from forming.

Keep the mixture consistently moist but not too saturated. Roots need oxygen as well as water in order to grow. Change the water daily if the cutting are in a glass of water. Cuttings root best in moderate light, not in intense light (HID's) or direct sunlight. The best light is fluorescent set on constant light (24 hour photoperiod).

{Picture. Comparing rooting mediums. Left to right: One, roots both in and removed from rockwool cube; two, perlite; three and four, perlite vermiculture mixture; five, vermiculite; not shown: cuttings died in peat-pellets. Best rooting was in perlite-vermiculite mixture. Pure vermiculite also worked well.} Cuttings taken from the same plant are genetically identical and are clones. Clones eliminate genetic differences between individuals, and hence are particularly useful in scientific experiments. By using clones, one can attribute variations between individuals specifically to outside factors. This would be particularly useful when testing, for example, the affect of fertilisers on potency. In the 1980's, scientists finally began to use this useful tool in Cannabis experiments.


One of the most persistent myths in marijuana lore concerns grafting Cannabis to its closest relative. Humulus, the hops plant of beer-making fame. The myth is that a hops scion (shoot or top portion of the stem) grafted to a marijuana stock (lower stem and root) will contain the active ingredients of marijuana. The beauty of such a graft is that it would be difficult to identify as marijuana and, possible, the plant would not be covered under marijuana statutes. Unfortunately, the myth is false. It is possible to successfully graft Cannabis with Humulus, but the hops portion will not contain any cannabinoids.

In 1975, the research team of Crombie and Crombie grafted hops scions on Cannabis stocks from both hemp and marijuana (Thailand) plants 205. Cannabis scions were also grafted to hops stocks. In both cases, the Cannabis portion of the graft continued to produce its characteristic amounts of cannabinoids when compared to ungrafted controls, but the hops portions of the grafts contained no cannabinoids. This experiment was well-designed and carried out. Sophisticated methods were used for detecting THC, THCV, CBD, CBC, CBN, and CBG. Yet none of these were detected in the hops portions.

The grafting myth grew out of work by H.E. Warmke, which was carried out for the government during the early 1940's in an attempt to develop hemp strains that would not contain the "undesirable" drug 58. The testing procedure for the active ingredients was crude. Small animals, such as the water flea Daphnia, were immersed in water with various concentration of acetone extracts from hemp. The strength of the drug was estimated by the number of animals killed in a given period of time. As stated by Warmke, "The Daphnia assay is not specific for the marijuana drug … once measures any and all toxic substances in hemp (or hop) leaves that are extracted with acetone, whether or not these have specific marijuana activity." Clearly it was other compounds, not cannabinoids, that were detected in these grafting experiments.

Unfortunately, this myth has caused some growers to waste a lot of time and effort in raising a worthless stash of hops leaves. It has also leg growers to some false conclusions about the plant. For instance, if the hops scion contains cannabinoids, the reasonable assumption is that the cannabinoids are being produced in the Cannabis part and translocated to the hops scion, or that the Cannabis root or stem is responsible for producing the cannabinoids precursors.

From this assumption, growers also get the idea that the resin is flowing in the plant. The myth has bolstered the ideas that cutting, splitting, or bending the stem will send the resin up the plant or prevent the resin from going down the plant. As explained in our discussion of resin glands in section 2, these ideas are erroneous. Only a small percentage of the cannabinoids are present in the internal tissues (laticiferous cells) of the plant. Almost all the cannabinoids are contained and manufactured in the resin glands, which cover the outer surfaces of the above-ground plant parts. Cannabinoids remain in the resin glands and are not translocated to other plant parts.

We have heard several claims that leaves from hops grafted on marijuana were psychoactive. Only one such case claimed to be first hand, and we never did see or smoke the material. We doubt these claims. Hops plants do have resin glands similar to those on marijuana, and many of the substances that make up the resin are common to both plants. But of several species and many varieties of hops tested with modern techniques for detecting cannabinoids, no cannabinoids have ever been detected 212.

The commercially valuable component of hops is lupulin, a mildly psychoactive substance used to make beer. To our knowledge, no other known psychoactive substances has been isolated from hops. But since these grafting claims persist, perhaps pot-heads should take a closer look at the hops plant.

Most growers who have tried grafting Cannabis and Humulus are unsuccessful. Compared to many plants, Cannabis does not take grafts easily. Most of the standard grafting techniques you've probably seen for grafting Cannabis simply don't work. For example, at the University of Mississippi, researchers failed to get one successful graft from the sixty that were attempted between Cannabis and Humulus. A method that works about 40 percent of the time is as follows. (Adapted from 205)

Start the hops plants one to two weeks before the marijuana plants. Plant the seeds within six inches of each other or start them in separate six-inch pots. The plants are ready to graft when the seedling are strong (about five and four weeks respectively) but their stem has not lost their soft texture. Make a diagonal incision about halfway through each stem at approximate the same levels (hops is a vine). Insert the cut portions into each other. Seal the graft with cellulose tape, wound string, or other standard grafting materials. In about two weeks, the graft will have taken. Then cut away the unwanted Cannabis top and the hops bottom to complete the graft. Good luck, but don't expect to get high from the hops leaves. {Smoking any plant's leaves will give a short, slight buzz.}


H.R. Warmke also experimented with breeding programs during the war years. Polyploid Cannabis plants were produced by treatment with the alkaloid colchicine. Colchicine interferes with normal mitosis, the process in which cells are replicated. During replication, the normal doubling of chromosomes occurs, but colchicine prevents normal separation of the chromosomes into two cells. The cell then is left twice (or more then) the normal chromosome count.

Warmke's experiments concluded that polyploids contained higher concentrations of the "active ingredient." However, the procedure for measuring that ingredient was much the same is described for grafting, with probably similar shortcomings.

Polyploid Cannabis has been found to be larger, with larger leaves and flowers. Recent experience has shown that polyploids are not necessarily higher in potency. Usually they are about equal to diploid siblings.

Colchicine is a highly poisonous substance. The simplest and safest way to induce polyploids is to soak seeds in a solution of colchicine derived from bulbs of winter or autumn crocus (Colchicum). Mash the bulbs and add an equal part of water. Strain through filter paper (or paper towels). Soak seeds in the solution and plant when they start to germinate. Cultivate as usual.

Only some of the seeds will become polyploid. Polyploid sprouts generally have thicker stems, and the leaves are often unusually shaped, with uneven-sized blades. Leaves also may contain more than the usual number of blades. As the plant grows, leaves should return to normal form, but continue to be larger and with more blades.

If no polyploids sprout, use less water in preparing the solution.

Colchicine is also a prescribed drug for treatment of gout and is taken in pill form. These usually contain .6 mg per tablet. Use 10 tablets per ounce of water, and soak the seeds as described above.

Colchicine is also sold by mail-order firms which advertise in magazines such as Head or High Times.

Because colchicine is a poison, it should be handled carefully. It is not known if plants from seeds treated with colchicine will contain a harmful amount of colchicine when plants are grown. Harm is unlikely, because the uptake by the seed is so small, and because the colchicine would be further diluted during growth, as well as diminished by smoking. But we cannot guarantee that you can safely smoke colchicine-treated plants.

– go to post

Genetics and Sex in Cannabis

Sex is an inherited trait in Cannabis, and can be explained in much the same terms as human sexuality can. Like a human being, Cannabis is a diploid organism: its chromosomes come in pairs. Chromosomes are microscopic structures within the cells on which the genes are aligned. Cannabis has 10 pairs of chromosomes (n=10), for a total of 20 chromosomes (2m=20).

One pair of chromosomes carries the primary genes that determine sex. These chromosomes are labelled either X or Y. Male plants have an XY pair of sex chromosomes. Females have XX. Each parent contribute one set of 10 chromosomes, which includes one sex chromosome, to the embryo. The sex chromosome carried by the female ovule can only be X. The one carried by pollen of the male plant may be either X or Y. From the pollen, the embryo has a 50/50 chance of receiving an X, likewise for Y; hance, male and female progeny appear in equal numbers (in humans, the sperm carries either an X or a Y chromosome.)


Male Plant

Under natural light, males usually start to flower from one to four weeks before the females. Where the photoperiod is artificially controlled, as with electric lights, males respond quickly (in about a week) to a change to short photoperiods and usually show flowers sooner than the females.

Male flowers develop quickly, in about one to two weeks on a vigorous plant, not uniformly. Scattered flowers may open a week or more before and after the general flowering, extending the flowering stage to about four weeks.

The flowering stage continues to demonstrate the male's tall, relatively sparse growth. Most of the flowers develop near the top of the plant, well above the shorter females. The immature flower buds first appear at the tips of the main stem and branches. Then tiny branches sprout from the leaf axils, bearing smaller clusters of flowers. The immature male flowers are closed, usually green, and develop in tight clusters of knob-like buds. The main parts of the male flowers are five petal-like sepals which enclose the sexual organs. As each flower matures, the sepals open in a radiating pattern to reveal five pendulous anthers (stamens).

Inside the ovoid, sac-shaped anthers, pollen grains develop. Initially, pollen sifts through two pores near the top of the anther; then, starting from the pores, longitudinal slits slowly open (zipperlike) over the course of a day, releasing pollen to the wind. Once a flower sheds pollen, it shortly dies and falls from the plant. Normally, male plants begin to die one to two weeks after the bulk of their flowers have shed pollen. Healthy males may continue to flower for several more weeks, but secondary growth seldom has the vigour of initial bloom.

Female Plant

The female plant generally starts to flower later than the male, under either natural light or an artificially controlled photoperiod. Female marijuana plants flower when the average daily photoperiod is less then about 12 to 13 hours. However, some varieties and individuals may flower with a photoperiod of over 14 hours. Some Colombian varieties may not respond until the photoperiod falls below 12 hours for a period of up to three weeks.

The duration of flowering also depends on the particular rhythm of the variety, as well as growing conditions, and whether or not the plant is pollinated. Within these variables, females maintain vigorous growth and continue to rapidly form flowers for a period that ranges from 10 days to about eight weeks.

Females generally do not grow much taller during flowering. Growth emphasises a "filling out," as flower clusters develop from each leaf axil and growing tip. Normally, the flowers arise in pairs, but the pairs form tight cluster of 10 to over 100 individual flowers that are interspersed with small leaves. These clusters are the "buds" of commercial marijuana. Along the top of the main stem and vigorous branches, "buds" may form so thickly that the last foot or more of stem is completely covered. Usually the leaves that accompany the flowers tend toward simpler structure, until each leaf has one to three blades. {Figure 76. Female in full bloom.}

The visible parts of the female flower are two upraised stigmas, one-quarter to one-half inch long, usually white or cream, sometimes tinged with red, that protrude from a tiny, green, pod-shaped structure called the floral bract. This consists of modified leaves (bracts and bracteoles) which envelop the ovule or potential seed. The mature bract is a tiny structure, about 1/8 inch across and 1/4 inch long. When fertilised, a single seed begins to develop within the bract, which then swells until it is split by the mature seed.

Bracts are covered more densely with large resin glands than is any other part of the plant, and are the most potent part of the harvest. Resin glands may also be seen on the small leaves that are interspersed among the flowers.

The differences between male and female Cannabis become more apparent as the plants mature. The same can be said of the differences between varieties. Often, two varieties may appear to be similar, until they actually flowers and fill out to different forms. These appear in many ways: some varieties maintain opposite phyllotaxy with long internodes throughout flowering; bud sizes vary from about one-half inch to about three inches, with a norm of about one to two inches; buds may be tightly arranged along the stem, yielding a "cola" two feet long and four inches thick; and some varieties only form buds along their main stem and branch tips, with a few "buds" forming along the branches.

{Figure 77. Upper left: Buds form thickly into colas along the top of the main stem and branches (full bloom). Upper right: A cola about two feet long. Lower left: A huge leafy cola. Lower right: Long, slim buds form late in the year when light is weak. (these four colas are from Mexican plants.} When a female is well-pollinated, growth slows and the plant's energy goes into forming seeds and thus into the continuation of the species. Some plants (but only the more vigorous ones) will renew flowering even when pollinated. Females that are not well-pollinated continue to form flowers rapidly. This extends the normal flowering period, of 10 days to four weeks, up to eight weeks or more.

Individual flowers are pollinated by individual pollen grains. In a matter of minutes from its landing on a stigma, the pollen grain begins to grow a microscopic tube, which penetrates the stigma and reaches the awaiting ovule wrapped within the bracts. The pollen tube is a passageway for the male's genetic contributions to the formation of the embryo (seed).

The union of the male and female complements of genes completes fertilisation and initiates seed formation. The stigmas, having served their purpose, shrivel and die, turning rust or brown colour. On a vigorous female, the seeds reach maturity in about 10 days. When growing conditions are poor, the seed may take five weeks to ripen to full size and colour. Naturally, all the flowers do not form, nor are they pollinated at the same time – and there will be seeds that reach maturity weeks before others do. Although each flower must be individually fertilised to produce a seed, a single male plant can release many millions of pollen grains. A large female plant can produce over 10,000 seeds.

Sexual Variants in Cannabis

Cannabis has been studied for many years because of its unusual sexuality. Besides the normal dioecious pattern, where each plant bears exclusively male or female flowers, it is not uncommon for some plants to have both male and female flowers. These are called hermaphrodites, or monoecious plants, or intersexes. Hermaphroditic plants form normal flowers of both sexes in a wide variety of arrangements, in both random and uniform distributions.

Natural Hermaphrodites

Some hermaphrodites seem to be genetically determined (protogenous). That is, they naturally form flowers of both sexes given normal growing conditions. Possibly genes carried on the autosomes (the chromosomes other than the sex chromosomes) modify the normal sexual expression. Monoecious varieties have been developed by hemp breeders in order to ensure uniform harvests.

It is also possible that these particular are polyploid, which means they have more than the usual two sets of chromosomes. This kind of hermaphrodite may have XXY (triploid), or XXYY or XXXY (tetraploid) sex chromosomes. However, no naturally occurring polyploids have ever been verified (by observation of the chromosomes) in any population of Cannabis. Polyploids have been induced in Cannabis by using mutagens, such as the alkaloid colchicine.

Whatever then genetic explanation may be, one or more of these natural hermaphrodites may randomly appear in any garden. They are sometimes faster-maturing, have larger leaves, and are larger in overall size than their unisexual siblings. They usually form flowers of both sexes uniformly in time and distribution, and in some unusual patterns. For example, from Mexican seed, we have seen a plant on which separate flowering cluster consisted of both female and male flowers: and upper section of female flowers had upraised stigmas, and a lower section of male flowers dangled beneath the female flowers. In other plants from Mexican seed, the growing tips throughout the plant have female flowers; male flowers sprout from the leaf axils along the main stem and branches. Plants from "Thai" seed sometimes form male and female flowers on separate branches. Branches with female flowers tend to predominate, but branches having mostly male flowers are located throughout the plant.

Abnormal Flowers, Intersexes, Reversals

Gender is set in the new plant at the time of fertilisation by its inheritance of either the X or the Y chromosome from the male (staminate) plant. With germination of the seed, the environment comes into play. Heritage sets the genetic program, but the environment can influence how the program runs. (Sexual expression in Cannabis is delicately balanced between the two.) The photoperiod, for example, controls the plant's sequence of development. Also, the plant's metabolism and life processes are dependent on growing conditions. When the environment does not allow a balance to be maintained, the normal genetic program may not be followed. This is mirrored by abnormal growth or sexual expression.

{Figure 78. Upper left: Abnormal flowers. Lower left: Male flowers on a female plant. Upper right: Sexes on separate branches. Lower right: Male flower in female bud (reversing).}

Abnormal Flowers

Abnormal sexual expression includes a whole range of possibilities. Individual flowers may form abnormally, and may contain varying degrees of both male and female flower parts. For instance, a male flower may bear a stigma; or an anther may protrude from the bracts of a female flower. Abnormally formed flowers are not often seen on healthy plants, although if one looks hard enough, a few may be found in most crops. When many of the flowers are abnormal, an improper photoperiod (coupled with poor health) is the most likely cause. Abnormal flowers sometimes form on marijuana grown out of season, such as with winter or spring crops grown under natural light.

Intersexes and Reversals Much more common than abnormally formed flowers is for the plant's sex to be confused. One may find an isolated male flower or two; or there may be many clusters of male flowers on an otherwise female plant, or vice versa. These plants are called intersexes (also hermaphrodites or monoecious plants). Intersexes due to environment causes differ from natural hermaphrodite in having random distributions and proportions of male and female flowers. In more extreme cases, a plant may completely reverse sex. For example, a female may flowers normally for several weeks, then put forth new, sparse growth, typical of the male, on which male flowers develop. The complete reversal from male flowering to female flowering also happens.

All other things being equal, the potency of intersexes and reversed plants is usually less than that of normal plants. If there are reversals or intersexes, both of the sexes will usually be affected. Female plants that reverse to male flowering show the biggest decline. Not only is the grass less potent, but the amount of marijuana harvested from male flowers is negligible compared to the amount of marijuana that can be harvested from a normal female. Plants that change from male to female flowering usually increase their potency, because of the growth of female flower bracts with their higher concentration of resin. Female flowers on male plants seldom form as thickly or vigorously as on a normal female. Between the loss in potency and the loss in yield because of females changing to males, a crop from such plants is usually inferior, in both yield and potency, to one from normal plants.

Environmental Effects

Many environmental factors can cause intersexes and sexual reversals. These include photoperiod, low light intensity, applications of ultraviolet light, low temperatures, mutilation or severe pruning, nutrient imbalances or deficiencies, senescence (old age), and applications of various chemicals (see bibliography on sex determination).

The photoperiod (or time of planting using natural light) is the most important factor to consider for normal flowering. In 1931, J. Schaffner (105) showed that the percentage of hemp plants that had confused sexual characteristics depended on the time of year they were planted. Normal flowering (less than five percent of the plants are intersexes) occurred when the seeds were sown in May, June, or July, the months when the photoperiod is longest and light intensity is strongest. When planted sooner or later in the year, the percentage of intersexuals increased steadily, until about 90 percent of the plants were intersexual when planted during November or early December.

Marijuana plants need more time to develop than hemp plants at latitudes in the United States. Considering potency, size, and normal flowering, the best time to sow for the summer crop is during the month of April. Farmers in the south could start the plants as late as June and still expect fully developed plants.

If artificial light is used, the length of the photoperiod can influence sexual expression. Normal flowering, with about equal numbers of male and female plants, seems to occur when the photoperiod is from 15 to 17 hours of light for a period of three to five months. The photoperiod is then shortened to 12 hours to induce flowering. With longer photoperiods, from 18 to 24 hours a day, the ratio of males to females changes, depending on whether flowering is induced earlier or later in the plant's life. When the plants are grown with long photoperiods for six months or more, usually there are at least 10 percent more male then female plants. When flowering is induced within three months of age, more females develop. Actually, the "extra" males or females are reversed plants, but the reversals occur before the plants flower in their natural genders.

Some plants will flower normally without a cutting of the photoperiod. But more often, females will not form thick buds unless the light cycle is cut to a period of 12 hours duration. Don't make the light cycle any shorter than 12 hours, unless the females have not shown flowers after three weeks of 12-hour days. Then cut the light cycle to 11 hours. Flowers should appear in about one week.

Anytime the light cycle is cut to less than 11 hours, some intersexes or reversed plant usually develop. This fact leads to a procedure for increasing the numbers of female flowers indoors. The crops can be grown for three months under a long photoperiod (18 or more hours of light). The light cycle is then cut to 10 hours. Although the harvest is young (about five months) there will be many more female flower buds than with normal flowering. More plants will develop female flowers initially, and male plants usually reverse to females after a few weeks of flowering.

Of the other environmental factors that can affect sexual expression in Cannabis, none are as predictable as the photoperiod. Factors such as nutrients or pruning affect the plant's overall health and metabolism, and can be dealt with by two general thoughts. First, good growing conditions lead to healthy plants and normal flowering: female and male plants occur in about equal numbers, with few (if any) intersexes or reversed plants. Poor growing conditions lead to reduced health and vigour, and oftentimes to confused sex in the adult plant. Second, the age of the plants seems to influence reversals. Male plants often show female flowers when the plant is young (vigorous) during flowering. Females seven or more months old (weaker) often develop male flowers after flowering normally for a few weeks.

Anytime the plant's normal growth pattern is disrupted, normal flowering may be affected. For instance, plant propagated from cuttings sometimes reverse sex, as do those grown for more than one season.

Sexing the Plants

The female plant is more desirable than the male for marijuana cultivation. The female flowering clusters (bus) are usually the most potent parts of the harvest. Also, given room to develop, a female generally will yield twice as much marijuana as her male counterpart. More of her weight consists of top-quality buds.

Because the female yields marijuana in greater quantity and sooner you can devote your attention to nurturing the females. Where space is limited, such as in indoor gardens and small outdoor plots most growers prefer to remove the males as soon as possible, and leave all available space for the females. To harvest sinsemilla (seedless female buds), you must remove the male plants before they mature and release pollen.

Differences in the appearance of male and female Cannabis become more apparent toward maturation. During the seedling stage, gender is virtually impossible to distinguish, although in some varieties the male seedling may appear slightly taller and may develop more quickly.

We know of no way to discover gender with any certainty until each plant actually forms either pollen-bearing male flowers or seed-bearing female flowers. However, certain general characteristics may help. Using guidelines like the following, growers who are familiar with a particular variety can often predict gender fairly accurately by the middle stage of the plant's life.

Early Vegetative Growth

After the initial seedling stage, female plants generally develop more complex branching than the male. The male is usually slightly taller and less branched. (Under artificial light, the differences in height and branching are less apparent throughout growth.)

Some plants develop a marked swelling at the nodes, which is more common and pronounced on female plants.

Middle Vegetative Growth

In the second to fourth months of growth, plants commonly form a few isolated flowers long before the actual flowering stage begins. These premature flowers are most often found between the eighth and twelfth nodes on the main stem. Often they appear near each stipule (leaf spur) on several successive nodes, at a distance two to six nodes below the growing tip. These individual flowers may not develop fully and are often hard to distinguish as male or female flowers. The fuzzy white stigmas of the female flower may not appear, and the male flowers seldom opens but remains a tightly closed knob. However, the male flower differs from the female; it is raised on a tiny stalk, and the knob is symmetrical. The female flower appear stalkless and more leaflike.

The presence of premature female flowers does not assure that the plant is a female, but premature male flowers almost always indicate a male plant. Unfortunately, it is much less common for male plants to develop premature male flowers than for female flowers to appear on either plant. For example, in one garden of 25 mixed-variety plants, by age 14 weeks, 15 plants showed well-formed, premature female flowers with raised stigmas. Eight of these plants matured into females and seven became males. Only two plants showed premature male flowers and both of these developed into males. The eight remaining plants did not develop premature flowers or otherwise distinguishable organs until the actual flowering stage at the age of 21 weeks. From these eight, there were four females, three males, and one plant bearing both male and female flowers (hermaphrodite). It does seem, however, that plants bearing well-formed female flowers, on several successive node, usually turn out to be females.


In the week or two prior to flowering and throughout flowering, many common marijuana varieties follow two general growth patterns which depend on gender. With these varieties, you can tell gender by the spacing between the leaves (internodes). For the female, the emphasis is on compact growth. Each new leaf grows closer to the last, until the top of the plant is obscured by tightly knit leaves. The male elongates just prior to showing flowers. New growth is spaced well apart and raises the male to a taller stature. This may by the first time the male shows its classic tall, loosely arranged profile.

{Figure 79. Premature flowers are found on the main stem next to the leaf spurs. Upper left: Early female flower without stigmas. Lower left: Undifferentiated (indistinguishable). Centre: Early male flower. Upper and lower right: Well-formed female flowers on successive nodes usually indicate a female.}


Sinsemilla ((The word "sinsemilla" comes from the Spanish, and means "without seeds." It is also spelled "sansimilla.")) is any marijuana consisting of seedless female flower buds. Sinsemilla is not a variety of marijuana; it is the seedless condition that results when the female flowers are not fertilised with pollen.

In the United States, most sinsemilla comes in the form of Thai sticks that are imported from Southeast Asia and Japan. Thai sticks are made up of seedless buds wrapped around a sliver of bamboo or a long wooden matchstick. The buds, which may be on one or more stems, are secured with a hemp fibre wound around the stick. A growing amount of fine sinsemilla now comes from domestic sources, such as Hawaii and California. The grass is usually boxed or bagged with pure buds that are manicured (extraneous leaf removed). Infrequently sinsemilla comes from Mexico and, rarely, from Colombia.

Sinsemilla has a reputation as high-potency marijuana, with a sweet taste and mild smoke. It doesn't have the harsh, gagging qualities of the usual Colombian and Mexican grasses. These qualities, however, have nothing to do with sinsemilla as such. The potency of any grass depends primarily on the variety and development of the plant, and the taste and mildness of the smoke depend on the condition of the plant when harvested and the cure. Heavily seeded grass can be as mild and sweet-smoking as sinsemilla when it is properly handled.

When buying grass, remember that sinsemilla indicates a conscientious effort on the grower's part to bring you the best possible product. Sinsemilla is almost pure smoking material with no wasted weight in seeds. An ounce of sinsemilla has about twice as much smoking material as a typical seeded ounce. Also, any marijuana that is fresh, with intact buds, indicated less deterioration of cannabinoids. {Figure 80. Thai Sticks.}

Sinsemilla is becoming a preferred form of grass with homegrowers, many of whom believe that a seedless female is more potent than a seeded one, reasoning that the plant's energy goes to the production of resin rather than seed. There seem to be no scientific studies on this point. Many experienced growers believe the difference is small, perhaps 10 percent.

From observing the resin glands on the bracts, one sees that they continue to develop in size after pollination. Any difference from the unseeded state is not apparent. Whether pollination does in fact hamper or lessen resin production or potency is questionable. but the effect on the plant as a whole can be dramatic. Usually when the female is well-pollinated, growth noticeably slows, and the plant enters the last phase of life, which is seed set. Seed set is a period of incubation, in which the seeds grow and reach their mature state. New growth forms more slowly and lack the vitality of the bloom before pollination. The plant's reaction to pollination is relative. The more thoroughly pollinated the female is, the more pronounced the change in rhythm from vigorous to incubation. A plant on which only a few flowers have been fertilised continues to actively form flowers as sinsemilla.

Not all plants react alike to pollination. When the weather is good and the plant vigorous, even a well-seeded plant may bloom a second or third time before the rate of growth starts a final decline.

To put this in perspective, the main advantage to growing sinsemilla is that the plant remains in a flowering state for a longer period of time. Flowers may rapidly form for four to ten weeks. The flower buds develop larger and more thickly along the stems, yielding more top-quality grass (more buds) than in the seeded condition.

Anyone can grow sinsemilla. Simply remove the male plants before they release pollen. Given a normal spring planting, males usually flowers in August and September, but may being to flower as early as mid-July. Under artificial lights, males sometimes flower after only three months, and before the grower has shortened the photoperiod. Even though the females are not flowering, remove the males from the room before any flowers open. Indoor, the pollen will collect as dust and can fertilise the females weeks later.

Male flowers mature quickly, in about one to two weeks after the immature buds are first visible. Check each plant about twice a week to make sure you harvest all the males before any shed pollen. If you can't visit your garden consistently, then thin the garden, using the preceding section on "Sexing" as a guide. Even though you may not get all the males, the females will be more lightly seeded. Actually, even in carefully watched gardens, the females may have a few seeds. Pollination may come from on occasional male flower on a basically female plant, or a female may reverse and form male flowers. And pollen may come from a neighbour's garden, a problem that is becoming more common. But in practical terms, an occasional seed makes no difference. The female can form thousands of flowers, and when only a few are pollinated, there is little impact on the plant's growth.

Posted – July 1st, 2010
under CannaLogic
Leave a comment
– go to post

Factor : A particle or unit in the organism which is responsible for the inheritance and expression of a particular character.

Gene : Mendel’s factor is now known as gene. A gene is a particular segment of a DNA molecule which determines the inheritance and expression of a particular character.

Alleles or Allelomorphs : Two or more alternative forms of a gene are called alleles or allelomorphs. For example in pea, the gene for producing seed shape may occur in two alternative forms: round (R) and wrinkled (r). Round and wrinkled forms of the gene are alleles of each other. Alleles occupy same locus on homologous chromosomes.

Dominant : Of the two alternating forms (allomorphs) of a trait, the one which appears in the F1 hybrid is called the dominant trait (Dominant Allele).

Recessive : Of the two alternating allomorphs of a trait, one which is suppressed (does not appear) in the F1 hybrid is called the recessive trait (recessive allele).

Genotype : The genetic make-up or genic constitution of an individual (which he/she inherits from the parents ) is called the genotype, e.g., the genotype of pure round seeded parent will be RR.

Phenotype : The external (morphological) appearance of an individual for any trait or traits is called the phenotype, e.g. for seeds, round shape or wrinkled shape is the phenotype.

Homozygous : An individual possessing (receiving from parents) identical alleles for a trait is said to be homozygous or pure for that trait, e.g. plant with RR alleles is homozygous for the seed shape. A homozygous always breeds true for that trait.

Heterozygous : An individual receiving dissimilar alleles for a trait is said to be heterozygous or impure for that trait, e.g. a plant with Rr alleles is heterozygous for the seed shape. Heterozygous is also called a hybrid.

Parent generations : The parents used for the first cross represent the parent (or P1) generation.

F1 generation : The progeny produced from a cross between two parents (P1) is called First Filial or F1 generation.

Inbreeding : When the individuals of a progeny (e.g. F1 generation) are allowed to cross with each other, it is called inbreeding.

F2 generation : The progeny resulting from self hybridization or inbreeding of F1 individuals is called Second Filial or F2 generation.

Monohybrid cross : The cross between two parents differing in a single pair of contrasting characters is called monohybrid cross and the F1offspring as the hybrid(heterozygous for one trait only).

Monohybrid ratio : The phenotypic ratio of 3 dominants : 1 recessive obtained in the F2 generation from the monohybrid cross is called monohybrid ratio.

Dihybrid cross : The cross between two parents in which two pairs of contrasting characters are studied simultaneously for the inheritance pattern. The F1 offspring is described as dihybrid or double heterozygous (i.e. with dissimilar alleles for two characters).

Dihybrid ratio : The phenotypic ratio obtained in the F2 generation from a dihybrid cross is called dihybrid ratio. In Mendelian experiments, this ratio is 9:3:3:1.

Homologues or Homologous chromosomes : The morphologically similar looking chromosomes in a diploid cell (one chromosome coming from the male parent and the other from the female parent) are called homologous chromosomes. They have identical gene loci bearing alleles.

DNA: Deoxyribonucleic acid, the heritable material of an organism.

Gene: The units of inheritance that transmit information from parents to offspring.

Chromosome: A long threadlike association of genes in the nucleus of all eukaryotic cells which are visible during meiosis and mitosis. A chromosome consists out of DNA and proteins. An organism always has 2n chromosomes, which means that all chromosomes are paired.

Genotype: This is the genetic makeup of an organism: the genes

Phenotype: The physical and physiological traits of an organism. These are influenced by genetic makeup (genes) and surrounding.

Allele: Another word for gene. Each chromosome has a copy of this allel, thus a gene-pair.

Homozygous: This term indicates that an organism has two identical alleles at a single place on a chromosome. This results in an organism that breeds true for only one trait.

Heterozygous: This term indicates that an organism has two different copies of a gene on each chromosome.

Dominant gene: In a heterozygote, this allele (gene) is fully expressed in the phenotype. In genetic schemes, these genes are always depicted with a capital letter.

Recessive gene: In a heterozygote, this allele (gene) is completely masked in the phenotype. In genetic schemes, these genes are always depicted with a lower case letter.

Intermediair gene: This is when in a heterozygote, an allele (gene) is not fully masked in the phenotype. You can already see some of the characteristics of the gene.
Good examples of this are the genes for crown- and doubletail.
– Fish with only one copy of the crowntail (ct) gene (will most of the time) already show some ray extensions.
– Fish with only one copy of the doubletail (dt) gene (will most of the time) already show a broader dorsal fin and fuller finnage.

How to indicate the different generations?

When two unrelated parents (P) are crossed their hybrid offspring is called the F1 generation (for the first filial generation).

When the F1 generation is interbred their offspring is called the F2 generation (for the second filial generation).

When the F2 generation is interbred their offspring is called the F3 generation (for the third filial generation).

And so on……..


Now try to visualize this using for example the allele for hair color in humans:

Brown hair is a dominant trait. How is it possible that two parents with brown hair get a blond daughter of son?

The allel for “brown hair” is dominant and depicted with “B”.
The allel for “blond hair” is recessive and depicted with “b”.

The answer lies here: Remember that all alleles come in pairs and that the parents have to be heterozygous for the allel for haircolor. This means that both parents have to posses the recessive trait for blond hair (“b”) besides the dominant trait for brown hair (“B”), thus “Bb”. The best thing to visualize this is by the use of a Punnet-square:

The offspring of two parents carrying the heterozygous “Bb” genotype can result in the following offspring: 25% homozygous for brown hair (“BB”), 50% heterozygous for brown hair (“Bb”) and 25% homozygous for blond hair (“bb”).


Inbreeding, linebreeding and outcrossing

In order to breed good quality Betta splendens, different breeding methods are used. Inbreeding, linebreeding and outcrossing play an important role in setting up a quality line of Betta splendens.

Inbreeding: A systematic program of breeding closely-related animals. This generally refers to father x daughter, mother x son, and brother x sister parings.

Linebreeding: This term is used to describe a less intense program of inbreeding. This generally refers to closely related pairings like uncle x niece and halfbrother x halfsister.

Outcrossing: Outcrossing refers to the breeding of two unrelated (inbred) strains.

What does inbreeding do in the genetic sense?
Inbreeding will increase the probability that any given gene has two identical copies derived from the same ancestor. It tends to make all genes more homozygous. Remember each animal has 2 two copies of a given gene (technically speaking, two alleles at each locus on the chromosome) one from each parent. Unfortunately we are not able to only select the desired genes we want because genes come as a package…….

One has to keep in mind that in the quest for fixating the desired traits by inbreeding, there is always the chance that we unintentionally loose some of the desired (“good”) genes and fixate some undesired (“bad”) genes which surface throughout the process.

Good examples of this are for instance the inbred strains of laboratory rodents. The process of inbreeding used to create this type of strains most of the time kills the majority of the strains between the 8th and 12th generations due to a loss of fertility (reduction in litter size) and viability. The strains, which survive these critical 8th-12th generations, form the inbred laboratory strains. These animals are homozygous for a more or less random selection of genes derived form the initial pair.

Why outcrossing?
As described in the example of the laboratory rodents above, in general inbreeding can be done up to F8 (8th generation). Most times the rate of breeding success is really low at this stage.

When we extrapolate this example to Betta splendens, extensive inbreeding can result in fish which show a number of undesired characteristics like: smaller bodies, decrease viability, decrease of aggressiveness, decrease of fertility, not building bubble nests, fish which don’t know how to wrap themselves around the female, etc. This is why it is advisable to use an out-cross (unrelated partner, fresh blood) once in a while in order to keep the lines healthy and viable.

When choosing the outcross candidate, the breeder always needs to decide which outcross candidate possesses the desired traits that can improve the established inbred line. Off course there is also a risk in outcrossing because a breeder can loose the type of betta he has been worked on for a long time. Breeders often decide to cross the hybrid offspring of an outcross back to their original inbred line. This in order to add the new or improven traits that were brought in by using an outcross, but also in order to eliminate possible bad traits brought by the outcross.

Terminology & Definitions II

Population Genetics Definitions

Adaptation = A trait that increases the survivability of an individual or its ability to reproduce when compared to individuals that do not possess that trait

Adaptive Radiation = Radiation of a group of organisms into populations adapted to exploit different ecological niches

Adaptive Trait = A trait that increases the fitness of an individual

Allopatric Speciation = Speciation that occurs when populations become geographically isolated due to genetic drift and when selection pressures differ between the two populations

Assortative Mating = A mating pattern that occurs when individuals tend to mate with other individuals of the same genotype and phenotype

Bottleneck = A large scale but short term decrease in the population size followed by an increase in the population size. Can cause speciation events

Convergent Evolution = Similarities between species that are the result of similar, but evolutionarily independent responses to common environmental factors. E.g. The wing of a bird and the wing of a butterfly

Evolution = Descent with modification = a change in the characteristics of a population over time = changes in the allele frequency of a population over time

Fitness = The degree to which an individual contributes genes to the next generation

Founder Effect = The establishment of a new population by a small number of individuals. can cause speciation events

Frequency = The proportion of a genotype, phenotype, gamete, or allele in a population. E.g. 6/10 have brown hair = a frequency of 0.6

Gene Pool = All of the copies of all of the alleles in a population that could be contributed by members of the present generation to members of the next generation

Genetic Drift = A change in the allele frequency of a population resulting from sampling error in taking gametes from the gene pool to make zygotes and from chance variation in the survival/reproductive success of individuals

Hardy-Weinberg Equilibrium = An ideal population in which the allele and genotype frequencies do not change from one generation to the next generation due to a lack of selection, mutation, migration, and genetic drift and due to the occurrence of random mating

Heritability = The fraction of the total phenotypic variation in a population that is caused by genetic differences between individuals

Homology = Similarities between species that results from the inheritance of traits from a common ancestor

Homoplasy = Similarities in the traits found in different species that is due to convergent evolution, parallelism, or reversal. It is not due to common descent

Hybrid Zone = A geographic zone where different populations/species interbreed

Inbreeding = Mating between relatives

Inbreeding Depression = A decrease in the fitness of an individual or a population due to inbreeding. It is often the result of a decrease in heterozygosity of an increase in the homozygosity (both are due to inbreeding)

Inclusive Fitness = An individual's total fitness = indirect fitness (fitness due to the reproduction by relatives made possible by that individual) + direct fitness (fitness due to the individual's own reproduction)

Macroevolution = Large scale evolutionary change = evolution of the differences between populations that would justify their placement into different genera (or higher level taxa)

Microevolution = Changes in the gene frequencies and trait distributions that occur within species and populations

Migration = The movement of alleles from one population to another population due to the movement of individuals or gametes

Natural Selection = Specific phenotypes confer increased survivability or reproductive success to the individuals that possess them

Negative Selection = Selection against deleterious mutations

Outbreeding = Mating between unrelated individuals

Polymorphism = The existence of more than one allele or variant in a population

Population = A group of individuals capable of interbreeding plus all of their offspring

Positive Selection = Selection for advantageous mutations

Preadaptation = A trait that changes due to natural selection and takes on a new function

Relative Fitness = The fitness of an individual, phenotype, or genotype compared to other individuals in the population

Species = Groups of populations that are capable of interbreeding and are evolutionarily independent from other populations

Sympatric Speciation = A speciation event involving species living in the same geographic area

Synapomorphy = A shared derived trait

Transitional Form = A species exhibiting traits that are common to both the ancestral and derived groups

Phylogenetics Definitions

Bootstrapping = A term commonly used in phylogenetic reconstruction = A technique used for estimating the strength of evidence for the existence of a particular node in a phylogenetic tree. Values range between 0% and 100% with 100% being the strongest level of support

Branch = A branch in a phylogenetic tree. See diagram

Clade = A group of species descended from a common ancestor = a monophyletic group

Evolution = Descent with modification = a change in the characteristics of a population over time = changes in the allele frequency of a population over time

Extant = Living today

Extinct = Not living today

Monophyletic Group = A population of a group of species descended from a common ancestor

Node = Branching point in a phylogenetic tree. See diagram

Outgroup = In phylogenetic analysis, a group that diverged prior to the rest of the taxa

Paraphyletic Group = A group of species that includes the common ancestor and some, but not all of that common ancestor's descendants

Phylogeny = The evolutionary history of a group

Psuedogene = DNA sequences that are homologous and resemble functioning genes, but are not transcribed

Sister Species = Species that diverged from the same node on a phylogenetic tree

Species = Groups of populations that are capable of interbreeding and are evolutionarily independent from other populations

Taxon = Any named group of organisms

Tip = The end of a branch on a phylogenetic tree.

Parental selection

Selecting the parents to develop a population is the essential component of both nascent and mature plant breeding programs. But how to do it? Many questions arise. What are the primary traits of interest? What secondary traits need to be considered? What is their inheritance? Who is the beneficiary of the cultivars to come from the population–farmers, consumers, seed companies? What are the biggest issues facing a crop–diseases, pests, nutritional profiles, etc.? Should the needs of the cropping system be included, not just the needs of the crop per se? No clear answer can be given to these questions, but the breeder must take some note of each of them as he or she assembles the parents to be used to form their population.

After answering the questions regarding needs and desired end products, the breeder attempts to identify germplasm that contains the traits and variability for the traits that are needed. Two factors are important in developing a base population: (1) the mean performance of the population–that is, the base population should have a reasonable mean performance at the outset of the breeding program, and (2) the genetic variance of the population–that is, a population with a high mean performance will not be useful for future selection if it has no genetic variability.

Thus, parents should be selected that have good performance but that derive from a variety of ancestries to optimize both mean performance and genetic variance in the population. Once the parents have been intercrossed in some manner (as discussed below), selection can begin. Typically, breeders make good x good crosses to capitalize on the improvement made up until now and to push it further. The hope is that recombination among the elite parental genotypes will produce transgressive progeny, thereby advancing the population, and the resulting cultivars, to a new level.

The sources of germplasm can be virtually anything that crosses with your crop, but in general, the best material availabe–commercial cultivars or elite breeding lines–is a good starting point. A problem arises if the variation for the trait of interest is small among these sources. In this case, acceptable breeding lines, superior in one or more characteristics but deficient in others, is a good choice. If more variation is needed, or if new traits need to be incorporated (e.g., resistance to a new disease), plant introductions can be considered.

Definitions from

Acclimatise – become adapted to new environmental conditions.
Bud – The female flower of the Cannabis plant where most of the cannabinoids are concentrated (e.g. THC)

Cannabinoid – molecule found only in the Cannabis plant. It occurs in many forms of which THC is the most renowned.

Cannabis indica – (hashish variety) is indigenous to the high northern mountain ranges of the Afghani Hindu Kush, Pakistani Kara Korams, Russian Pamirs and Alays, Chinese Tien Shan and Indian Himalayas. Indica strains yield earlier, stronger, more potent, fatter, heavier, resinous flowers and are typified by wide, dark green leaves, though they are usually only about 4 foot tall.

Cannabis sativa – (ganja variety) is indigenous to Mexico, Columbia, Thailand, India, Africa and, in fact, most of the world. Sativa strains have a sweeter, fruity taste and aroma, a higher flower to leaf ratio. They are large "pine tree-like" plants with light green leaves. The sativa high is a clearer, more electric, cerebral experience.

CBD – or cannabidiol is another form of Cannabinoid that seems to reduce the psychoactive effect and reduces anxiety and panic reactions occasionally caused by Cannabis.

Cerebral – pertaining to the mind or head, mental.

Crossing – Mating and breeding from two strains.

Cured – to manicure and dry the flowers of a plant.

F1 Hybrid – the offspring of two true-breeding plants.

F2 – the offspring resulting from a cross between two F1 hybrids.

Genetics – parental combination of a strain.

Hashish – a drug formed of resin heads of glandular trichomes shaken or rubbed from flowers, pressed together and shaped.

Haze – late maturing strain with a renowned taste and effect.

Hermaphrodite – a plant that produces both male and female flowers, this enables it to self-fertilize.

Hermetically – out of external influence.

Hybrid – the offspring of two different strains of a plant.

Hybridisation – When a cross produces offspring that do not breed true (i.e. the offspring do not all resemble their parents) we say the parents have genes that are hybrid. Hybridisation is the process of mixing different gene pools to produce offspring of great genetic variation from which distinctive individuals can be selected.

IBL – inbred line, a stabilised hybrid that will breed "true to type" if reproduced from its own seeds.

Manicure – to cut away unwanted leaves from the flower.

Maturation – The growth of the flowers of the plant before they are ready to be harvested when THC levels are at a maximum.

Nederwiet – literally "low weed", found in Holland and Europe before the emergence of new more potent strains.

Psychedelic – effecting the mind e.g. hallucinations.

Psychoactive – affecting consciousness or psyche.

Pure-bred – traditional land races that have only interbred with the same strain and so have almost identical genes

Resin – substance secreted by plants which in the case of Cannabis is where the cannabinoids (and THC) are concentrated.

Selection – choosing of favourable offspring as parents for future generations.

Sensimilla – Flowers produced from a female plant that has not been fertilized and does not contain seeds (literally ‘sin semilla’ translated from Spanish as ‘without seed’)

Skunk – (aka skunk No 1.) early maturing, stabilised hybrid, with high yield and potency.

Stabilized – A strain that will breed "true to type"

Strain – a line of offspring derived from common ancestors.

THC – tetrahydrocannbinol. This is the primary psychoactive compound in Cannabis.

Trait – An inherited characteristic.

Trichomes – plant hair.

True-breeding – If cross-pollination of two plants with a shared genetic trait results in offspring that all exhibit the same trait, and if all subsequent (inbred) generations also exhibit it, then we say that the strain is true-breeding or breeds true, for that trait. A strain may breed true in one or more traits while varying in other characteristics. For example, the traits of sweet aroma and early maturation may breed true, while offspring may vary in size or shape. The alternative is hybridisation.

Variety – there are two main varieties of Cannabis: sativa and indica, please see above. There is also a third known variety, ruderalis, which typically contains only trace amounts of THC.

Viability – potential for germination.

:: Variation in Cannabis






Here are some recent publications on patterns of variation in Cannabis. The bottom line is that so-called "indica" and "sativa" drug strains are both C. indica … sativa is the stuff they make rope out of.——————–
Genetic evidence for speciation in Cannabis (Cannabaceae). Genetic Resources and Crop Evolution. 2005. 52(2): 161-180.



Department of Biology, Indiana University, Bloomington, IN, USA

__Sample populations of 157 Cannabis accessions of diverse geographic origin were surveyed for allozyme variation at 17 gene loci. The frequencies of 52 alleles were subjected to principal components analysis. A scatter plot revealed two major groups of accessions. The sativa gene pool includes fiber/seed landraces from Europe, Asia Minor, and Central Asia, and ruderal populations from Eastern Europe. The indica gene pool includes fiber/seed landraces from eastern Asia, narrow-leafleted drug strains from southern Asia, Africa, and Latin America, wide-leafleted drug strains from Afghanistan and Pakistan, and feral populations from India and Nepal. A third putative gene pool includes ruderal populations from Central Asia. None of the previous taxonomic concepts that were tested adequately circumscribe the sativa and indica gene pools. A polytypic concept of Cannabis is proposed, which recognizes three species, C. sativa, C. indica and C. ruderalis, and seven putative taxa.
A chemotaxonomic analysis of terpenoid variation in Cannabis. Biochemical Systematics and Ecology 2004. 32: 875-891.

Karl W. Hillig
Department of Biology, Indiana University, Bloomington, IN, 47405 USA

To determine whether the terpenoid composition of the essential oil of Cannabis is useful for chemotaxonomic discrimination, extracts of pistillate inflorescences of 162 greenhouse-grown plants of diverse origin were analyzed by gas chromatography. Peak area ratios of 48 compounds were subjected to multivariate analysis and the results interpreted with respect to geographic origin and taxonomic affiliation. A canonical analysis in which the plants were pre-assigned to C. sativa or C. indica based on previous genetic, morphological, and chemotaxonomic studies resulted in 91% correct assignment of the plants to their pre-assigned species. A scatterplot on the first two principal component axes shows that plants of accessions from Afghanistan assigned to the wide-leaflet drug biotype (an infraspecific taxon of unspecified rank) of C. indica group apart from the other putative taxa. The essential oil of these plants usually had relatively high ratios of guaiol, isomers of eudesmol, and other unidentified compounds. Plants assigned to the narrow-leaflet drug biotype of C. indica tended to have relatively high ratios of trans-beta-farnesene. Cultivars of the two drug biotypes may exhibit distinctive medicinal properties due to significant differences in terpenoid composition.
A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae).
American Journal of Botany 91(6): 966-975.

Karl W. Hillig and Paul G. Mahlberg
Department of Biology, Indiana University, Bloomington, Indiana

Cannabinoids are important chemotaxonomic markers unique to Cannabis. Previous studies show that a plant's dry-weight ratio of delta-9-tetrahydrocannabinol (THC) to cannabidiol (CBD) can be assigned to one of three chemotypes and that alleles BD and BT encode alloenzymes that catalyze the conversion of cannabigerol to CBD and THC, respectively. In the present study, the frequencies of BD and BT in sample populations of 157 Cannabis accessions were determined from CBD and THC banding patterns, visualized by starch gel electrophoresis. Gas chromatography was used to quantify cannabinoid levels in 96 of the same accessions. The data were interpreted with respect to previous analyses of genetic and morphological variation in the same germplasm collection. Two biotypes (infraspecific taxa of unassigned rank) of C. sativa and four biotypes of C. indica were recognized. Mean THC levels and the frequency of BT were significantly higher in C. indica than C. sativa. The proportion of high THC/CBD chemotype plants in most accessions assigned to C. sativa was <25%>25%. Plants with relatively high levels of tetrahydrocannabivarin (THCV) and/or cannabidivarin (CBDV) were common only in C. indica. This study supports a two-species concept of Cannabis.

A Systematic Investigation of Cannabis
Karl W. Hillig
Doctoral Dissertation
Department of Biology, Indiana University
March, 2005.


Botanists disagree whether Cannabis (Cannabaceae) is a monotypic or polytypic genus. A systematic investigation was undertaken to elucidate underlying evolutionary and taxonomic relationships within the genus. Genetic, morphological, and chemotaxonomic analyses were conducted on 157 Cannabis accessions of known geographic origin. Sample populations of each accession were surveyed for allozyme variation at 17 gene loci. Principal component (PC) analysis of the allozyme allele frequencies revealed that most accessions were derived from two major gene pools corresponding to C. sativa L., and C. indica Lam. A third putative gene pool corresponds to C. ruderalis Janisch. Previous taxonomic treatments were tested for goodness of fit to the pattern of genetic variation. Based on these results, a working hypothesis for a taxonomic circumscription of Cannabis was proposed that is a synthesis of previous polytypic concepts. Putative infraspecific taxa were assigned to “biotypes” pending formal taxonomic revision. Genetic variation was highest in the hemp and feral biotypes and least in the drug biotypes. Morphometric traits were analyzed by PC and canonical variates (CV) analysis. PC analysis failed to differentiate the putative species, but provided objective support for recognition of infraspecific taxa of C. sativa and C. indica. CV analysis resulted in a high degree of discrimination of the putative species and infraspecific taxa. Variation in qualitative and quantitative levels of cannabidiol (CBD), tetrahydrocannabinol (THC), and other cannabinoids was determined, as were frequencies of alleles that control CBD and THC biosynthesis. The patterns of variation support a two-species concept, but not recognition of C. ruderalis as a separate species from C. sativa. PC analysis of terpenoid variation showed that the wide-leaflet drug (WLD) biotype of C. indica produced enhanced mean levels of guaiol and isomers of eudesmol, and is distinct from the other putative taxa. In summary, the results of this investigation show that a taxonomic revision of Cannabis is warranted. However, additional studies of putative wild populations are needed to further substantiate the proposed taxonomic treatment.

– go to post

* Allard R. 1999. Principles of Plant Breeding. ISBN: 0471023094

u Bahl. 1996. Genetics, Cytogenetics & Breeding of Crop Plants.. ISBN: 1886106592 $110

Bajaj VPS. 1990. Haploids in Crop Improvement I (Biotechnology in Agriculture and Forestry, vol 12). ISBN: 0387507981

Ben-Hui Liu. 1997. Statistical Genomics: Linkage, Mapping, and QTL Analysis. ISBN: 0849331668

/ Burbank L et al. 1914-15. Luther Burbank : his methods and discoveries and their practical application. Range 29 SB63 B9A5 – Sp Col.

* Callaway & Callaway. 2000 Breeding Ornamental Plants.. ISBN: 0881924822

* Clarke RC. 1981. Marijuana Botony Ronin Publishing, California

* Colangeli AM. 1989. Advanced Biology notes. University of Victoria, BC

u Comstock RE. 1996. Quantitative Genetics with Special Reference to Plant & Animal Breeding. ISBN: 0813820111 $180

Deppe C. Breed Your Own Vegetable Varieties: the Gardener's .. ISBN

u Falconer & Mackay. 1996. Introduction to Quantitative Genetics. ISBN: 0582243025

* Futuyma DJ. 1986. Evolutionary Biology Sinauer Associates, Inc. Massachusetts

/ Gupta PK. Tsuchiya T.1991. Chromosome engineering in plants : genetics, breeding, evolution. QK981.35 C493

* Gronick L & Wheelis M. 1991. The Cartoon Guide to Genetics. ISBN:0062730991 $25

* Grossnickle & Russell. 1989. Stock quality improvement of yellow-cedar. Canada-BC Forest Resources
Developement Agreement (F.R.D.A.) Project 2.40

Hartl D & Clark AG. c1997. Principles of Population Genetics. 3rd ed. ISBN: 0878933069 $170

Hayes HK. Hybrid Corn

* Hayward et al. 1993. Plant Breeding: Principles & Prospects.. ISBN: 0412433907

u Hill. 1997. Quantitative & Ecolgical Aspects of Plant Breeding. ISBN: 0412753901 $185

Howell SH. 1998. Molecular Genetics of Plant Development

* Iversen L. 2000. The Science of Marijuana. ISBN 0195131231

Janick J. 2001. Plant Breeding Reviews. 0471418471 $285

u Jensen NF. 1988. Plant Breeding Methodology.. ISBN: 047160190x $210

u Kalloo & Bergh. 1993. Genetic Improvement of Vegetable Crops.

/ Kalloo JB.& Chowdhury (eds.). 1992 Distant hybridization of crop plants. SB123 D56

* Klug & Cummings. 1986. Concepts of Genetics 2nd ed. Scott, Foresman, & comp. Illinois

u Kuckuck et al. 1991. Fundamentals of Plant Breeding.. ISBN: 0387521097 $150

Nitzsche, Werner. 1977. Haploids in Plant Breeding. ISBN: 3489750101

/ North C. 1979. Plant breeding and genetics in horticulture. SB319.6 N67 1979

* Poehlman JM. 1995. Breeding Field Crops. ISBN: 0813824273

* Ranalli, Paolo 1999. Advances in Hemp Research. ISBN: 1560228725

u Richards. 1997. Plant Breeding Systems. ISBN: 0412574500 $85

u Stalke & Murphey. 1992. Plant Breeding in the 1990s.. ISBN: 0851987176 $225

/ Sybenga. 1992. Cytogenic Plant Breeding. ISBN: 0387521127 – Call SB123 S984

/ Tanksley SD & and Orton TJ. 1983. Isozymes in plant genetics and breeding. SB123 I87

Thorpe. 1981. Plant Tissue Culture: Methods & Application in Agriculture.. ISBN: 0126906807

Wallace DH & Yan W. 1998. Plant Breeding & Whole-System Crop Physiology: Improving Adaptation, Maturity & Yield. ISBN: 085199265X

* Watts. 1980. Flower & Vegetable Plant Breeding Grower Books, London ISBN 0901361356

Wricke Weber. 1986. Quantitative Genetics and selection in Plant Breeding.

* Wright JW. 1976 Introduction to Forest Genetics. Academic Press, San Francisco. ISBN 0-12-765250-7